cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288852 Number T(n,k) of matchings of size k in the n X n X n triangular grid; triangle T(n,k), n>=0, 0<=k<=floor(n*(n+1)/4), read by rows.

Original entry on oeis.org

1, 1, 1, 3, 1, 9, 15, 2, 1, 18, 99, 193, 108, 6, 1, 30, 333, 1734, 4416, 5193, 2331, 240, 1, 45, 825, 8027, 45261, 151707, 298357, 327237, 180234, 40464, 2238, 1, 63, 1710, 26335, 255123, 1629474, 6995539, 20211423, 38743020, 47768064, 35913207, 15071019
Offset: 0

Views

Author

Alois P. Heinz, Jun 18 2017

Keywords

Comments

The n X n X n triangular grid has n rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(n) vertices and 3*A000217(n-1) edges altogether.

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1,  3;
  1,  9,  15,    2;
  1, 18,  99,  193,   108,      6;
  1, 30, 333, 1734,  4416,   5193,   2331,    240;
  1, 45, 825, 8027, 45261, 151707, 298357, 327237, 180234, 40464, 2238;
		

Crossrefs

Columns k=0-1 give: A000012, A045943(n-1) for n>0.
Row sums give A269869.
Last elements of rows give A271610.

Programs

  • Maple
    b:= proc(l) option remember;  local n, k; n:= nops(l);
          if n=0 then 1
        elif min(l)>0 then b(subsop(-1=NULL, map(h-> h-1, l)))
        else for k to n while l[k]>0 do od; b(subsop(k=1, l))+
             expand(x*(`if`(k1 and l[k-1]=1, b(subsop(k=1, k-1=2, l)), 0)))
          fi
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b([0$n])):
    seq(T(n), n=0..10);
  • Mathematica
    b[l_] := b[l] = Module[{n = Length[l], k}, Which[n == 0, 1, Min[l] > 0, b[ReplacePart[l - 1, -1 -> Nothing]], True, For[k = 1, k <= n && l[[k]] > 0, k++]; b[ReplacePart[l, k -> 1]] + x*Expand[If[k < n, b[ReplacePart[l, k -> 2]], 0] + If[k < n && l[[k + 1]] == 0, b[ReplacePart[l, {k -> 1, k + 1 -> 1}]], 0] + If[k > 1 && l[[k - 1]] == 1, b[ReplacePart[l, {k -> 1, k - 1 -> 2}]], 0]]]];
    T[n_] := Table[Coefficient[#, x, i], {i, 0, Exponent[#, x]}]&[b[Table[0, n] ]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 24 2018, translated from Maple *)

Formula

T(n,floor(n*(n+1)/4)) = A271610(n).
Sum_{i=0..1} T(n,floor(n*(n+1)/4)-i) = A271612(n).
Sum_{i=0..2} T(n,floor(n*(n+1)/4)-i) = A271614(n).
Sum_{i=0..3} T(n,floor(n*(n+1)/4)-i) = A271616(n).