A288872 Denominators for generalized Bernoulli numbers B[5,j](n), for j=1..4, n >= 0.
1, 2, 6, 1, 6, 1, 42, 1, 6, 1, 66, 1, 546, 1, 6, 1, 102, 1, 798, 1, 66, 1, 138, 1, 546, 1, 6, 1, 174, 1, 14322, 1, 102, 1, 6, 1, 383838, 1, 6, 1, 2706, 1, 1806, 1, 138, 1, 282, 1, 9282, 1, 66, 1, 318, 1, 798, 1, 174, 1, 354, 1, 11357346, 1, 6, 1, 102, 1, 64722, 1, 6, 1, 4686
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10101
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Crossrefs
Programs
-
Mathematica
Table[Denominator[BernoulliB[n, 1/5]]/5^n, {n, 0, 70}] (* Jean-François Alcover, Sep 24 2018, from PARI *)
-
PARI
a(n)=denominator(subst(bernpol(n, x), x, 1/5))/5^n; \\ Michel Marcus, Jul 06 2017
-
Python
from sympy import bernoulli def a(n): return bernoulli(n, 1/Integer(5)).denominator//(5**n) print([a(n) for n in range(41)]) # Indranil Ghosh, Jul 06 2017
Comments