cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288872 Denominators for generalized Bernoulli numbers B[5,j](n), for j=1..4, n >= 0.

Original entry on oeis.org

1, 2, 6, 1, 6, 1, 42, 1, 6, 1, 66, 1, 546, 1, 6, 1, 102, 1, 798, 1, 66, 1, 138, 1, 546, 1, 6, 1, 174, 1, 14322, 1, 102, 1, 6, 1, 383838, 1, 6, 1, 2706, 1, 1806, 1, 138, 1, 282, 1, 9282, 1, 66, 1, 318, 1, 798, 1, 174, 1, 354, 1, 11357346, 1, 6, 1, 102, 1, 64722, 1, 6, 1, 4686
Offset: 0

Views

Author

Wolfdieter Lang, Jul 05 2017

Keywords

Comments

See, e.g., A157871 for details on B[d,a](n) with gcd(d,a) = 1.

Crossrefs

Cf. A027642 (denominators B[1,0]), A141459 (denominators B[2,1]), A285068 (denominators B[3,1] and B[3,2]), A141459 (denominators B[4,1] and B[4,3]).
For the numerators of B[5,j](n), for j=1..4, see A157866(n), A157883(n), (-1)^n*A157883(n), (-1)^n*A157866(n), respectively.
Cf. A157871.

Programs

  • Mathematica
    Table[Denominator[BernoulliB[n, 1/5]]/5^n, {n, 0, 70}] (* Jean-François Alcover, Sep 24 2018, from PARI *)
  • PARI
    a(n)=denominator(subst(bernpol(n, x), x, 1/5))/5^n; \\ Michel Marcus, Jul 06 2017
    
  • Python
    from sympy import bernoulli
    def a(n): return bernoulli(n, 1/Integer(5)).denominator//(5**n)
    print([a(n) for n in range(41)]) # Indranil Ghosh, Jul 06 2017