A288873 Numerators of scaled Bernoulli numbers 4^n*B(n), with B(n) = A027641(n)/A027642(n).
1, -2, 8, 0, -128, 0, 2048, 0, -32768, 0, 2621440, 0, -5796528128, 0, 939524096, 0, -7767448354816, 0, 1507258642989056, 0, -95993412418797568, 0, 7516375836686024704, 0, -33265288504730187726848, 0, 19259875741830735724544, 0, -855664510723636131971203072, 0, 4966694343692730467779807805440
Offset: 0
Examples
The rationals r(n) begin: 1, -2, 8/3, 0, -128/15, 0, 2048/21, 0, -32768/15, 0, 2621440/33, 0, -5796528128/1365, 0, 939524096/3, 0, -7767448354816/255, 0, 1507258642989056/399, 0, -95993412418797568/165, ...
Links
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Crossrefs
Programs
-
Maple
seq(numer(4^n*bernoulli(n)),n=0..28); # Peter Luschny, Jul 17 2017
-
Mathematica
Table[4^n BernoulliB[n] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Jul 14 2018 *)
-
PARI
a(n) = numerator(4^n*bernfrac(n)); \\ Michel Marcus, Jul 06 2017
-
Python
from sympy import bernoulli def a(n): return -2 if n == 1 else (4**n * bernoulli(n)).numerator [a(n) for n in range(31)] # Indranil Ghosh, Jul 06 2017
Comments