A288912 Number of permutations p of [n] such that 0p has a nonincreasing down-jump sequence.
1, 1, 2, 6, 23, 106, 558, 3284, 21200, 148539, 1119273, 9013112, 77106652, 697811164, 6652604804, 66593158893, 697756930786, 7633155361594, 86969814549075, 1029939820075074, 12652809025029242, 160977119684852369, 2117642963178349336, 28763717105362639324
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, j), j=1..min(t, u))+ add(b(u+j-1, o-j, t), j=1..o)) end: a:= n-> b(0, n$2): seq(a(n), n=0..30);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, j], {j, Min[t, u]}] + Sum[b[u + j - 1, o - j, t], {j, o}]]; a[n_] := b[0, n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 31 2021, after Alois P. Heinz *)
Comments