A288959 a(n) = n^2*(n^2 - 1)^2/2.
0, 18, 288, 1800, 7200, 22050, 56448, 127008, 259200, 490050, 871200, 1472328, 2384928, 3726450, 5644800, 8323200, 11985408, 16901298, 23392800, 31840200, 42688800, 56455938, 73738368, 95220000, 121680000, 154001250, 193179168, 240330888, 296704800, 363690450
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Detour Index
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Queen Graph
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Eric Weisstein's World of Mathematics, Rook Graph
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Programs
-
Mathematica
Table[n^2 (n^2 - 1)^2/2, {n, 20}] LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 18, 288, 1800, 7200, 22050, 56448}, 20] CoefficientList[Series[-((18 x (1 + x) (1 + 8 x + x^2))/(-1 + x)^7), {x, 0, 20}], x] 18 Binomial[Range[0, 20] + 2, 3]^2 (* Eric W. Weisstein, Dec 20 2017 *)
-
PARI
a(n) = n^2*(n^2-1)^2/2; \\ Altug Alkan, Dec 20 2017
Formula
a(n) = n^2*(n^2 - 1)^2/2.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: (-18*x^2*(1+x)*(1+8*x+x^2))/(-1+x)^7.
a(n) = 18 *A001249(n-2). - R. J. Mathar, Dec 17 2017
Comments