A288960 Number of 6-cycles in the n X n rook graph.
0, 0, 60, 1248, 8400, 35520, 114660, 309120, 731808, 1569600, 3114540, 5802720, 10261680, 17367168, 28310100, 44674560, 68527680, 102522240, 150012828, 215186400, 303208080, 420383040, 574335300, 774204288, 1030860000, 1357137600, 1768092300, 2281275360, 2917032048, 3698822400
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Rook Graph
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
Programs
-
Mathematica
Table[(n - 1) (n - 2) n^2 (n + 2) (n^2 + 2 n - 11)/6, {n, 20}] Table[Binomial[n, 3] n (n + 2) (n^2 + 2 n - 11), {n, 20}] LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 60, 1248, 8400, 35520, 114660, 309120}, 20] CoefficientList[Series[(12 x^2 (5 + 64 x + 8 x^2 - 8 x^3 + x^4))/(-1 + x)^8, {x, 0, 20}], x]
Formula
a(n) = (n-1)*(n-2)*n^2*(n+2)*(n^2+2*n-11)/6.
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)+a(n-8).
G.f.: (12*x^3*(5+64*x+8*x^2-8*x^3+x^4))/(-1+x)^8.