cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288960 Number of 6-cycles in the n X n rook graph.

Original entry on oeis.org

0, 0, 60, 1248, 8400, 35520, 114660, 309120, 731808, 1569600, 3114540, 5802720, 10261680, 17367168, 28310100, 44674560, 68527680, 102522240, 150012828, 215186400, 303208080, 420383040, 574335300, 774204288, 1030860000, 1357137600, 1768092300, 2281275360, 2917032048, 3698822400
Offset: 1

Views

Author

Eric W. Weisstein, Jun 20 2017

Keywords

Crossrefs

Cf. A288961 (3-cycles), A288962 (4-cycles), A288963 (5-cycles).

Programs

  • Mathematica
    Table[(n - 1) (n - 2) n^2 (n + 2) (n^2 + 2 n - 11)/6, {n, 20}]
    Table[Binomial[n, 3] n (n + 2) (n^2 + 2 n - 11), {n, 20}]
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 60, 1248, 8400, 35520, 114660, 309120}, 20]
    CoefficientList[Series[(12 x^2 (5 + 64 x + 8 x^2 - 8 x^3 + x^4))/(-1 + x)^8, {x, 0, 20}], x]

Formula

a(n) = (n-1)*(n-2)*n^2*(n+2)*(n^2+2*n-11)/6.
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)+a(n-8).
G.f.: (12*x^3*(5+64*x+8*x^2-8*x^3+x^4))/(-1+x)^8.