A289118 Least prime beginning a string, of length at least n, of consecutive primes which alternate between types 4*k+1 and 4*k+3 or 4*k+3 and 4*k+1.
3, 3, 3, 23, 47, 131, 131, 233, 233, 521, 521, 521, 521, 521, 521, 51749, 505049, 1391087, 2264839, 2556713, 2569529, 2569529, 6160043, 6160043, 6160043, 43679609, 43679609, 198572029, 701575297, 5552898499, 6639843979, 9005520203, 9005520203, 99052377023
Offset: 1
Keywords
Examples
{Prime[k], Mod[ Prime[k], 4]} = {{3, 3}, {5, 1}, {7, 3}, {11, 3}, {13, 1}, {17, 1}, {19, 3}, {23, 3}, {29, 1}}, {31, 3}, {37, 1}, . . for k = 2, 3, 4, . ., so a(n) = 3, 3, 3, 23 for n = 1, 2, 3, 4.
References
- R. K. Guy, Unsolved Problems in Number Theory, A4.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..45
- Jens Kruse Andersen, Consecutive Congruent Primes
Crossrefs
Programs
-
Mathematica
j = 2; T = Table[ While[ Product[ Mod[ Prime[k + 1] - Prime[k], 4], {k, j, j + n}] == 0, j++]; Prime[j], {n, 0, 15}]; Prepend[T, 3]
Formula
a(n) = A247384(n) if and only if n > 1 and a(n) < a(n+1).
Extensions
a(18)-a(27) from Alois P. Heinz, Jun 26 2017
a(28)-a(34) from Giovanni Resta, Jul 02 2017
Comments