A289134 a(n) = 21*n^2 - 33*n + 13.
1, 31, 103, 217, 373, 571, 811, 1093, 1417, 1783, 2191, 2641, 3133, 3667, 4243, 4861, 5521, 6223, 6967, 7753, 8581, 9451, 10363, 11317, 12313, 13351, 14431, 15553, 16717, 17923, 19171, 20461, 21793, 23167, 24583, 26041, 27541, 29083, 30667, 32293
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- D. R. Reynolds, Geometric graphic of t, a(t) for t=1...4
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
hexgro[t_]:=7+4*6+5*6*(t-2)+Sum[i*6*7,{i,t-2}]; Table[hexgro[n],{n,40}] LinearRecurrence[{3,-3,1},{1,31,103},40] (* Harvey P. Dale, Apr 23 2020 *)
-
PARI
Vec(x*(1 + 28*x + 13*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jun 28 2017
Formula
G.f.: x*(1 + 28*x + 13*x^2) / (1 - x)^3. - Colin Barker, Jun 28 2017
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - Colin Barker, Jul 29 2017
Extensions
New Name from Omar E. Pol, Jun 25 2017
Comments