A289181 Number of 6-cycles in the n X n knight graph.
0, 0, 0, 20, 164, 616, 1348, 2352, 3628, 5176, 6996, 9088, 11452, 14088, 16996, 20176, 23628, 27352, 31348, 35616, 40156, 44968, 50052, 55408, 61036, 66936, 73108, 79552, 86268, 93256, 100516, 108048, 115852, 123928, 132276, 140896, 149788, 158952, 168388, 178096
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Knight Graph
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
Crossrefs
Cf. A163433 (4-cycles).
Programs
-
Mathematica
Table[Length[FindCycle[KnightTourGraph[n, n], {6}, All]], {n, 20}] Table[Piecewise[{{0, n < 4}, {20, n == 4}, {164, n == 5}}, 4 (34 n^2 - 259 n + 484)], {n, 20}] Join[{0, 0, 0, 20, 164}, LinearRecurrence[{3, -3, 1}, {1036, 408, 52}, {6, 20}]] CoefficientList[Series[(4 x^3 (-5 - 26 x - 46 x^2 + 7 x^3 + 2 x^4))/(-1 + x)^3, {x, 0, 20}], x]
-
PARI
a(n)=4*if(n>5,34*n^2 - 259*n + 484, max(36*n-139, 0)) \\ Charles R Greathouse IV, Oct 21 2022
Formula
For n > 5, a(n) = 4 (34 n^2 - 259 n + 484).
G.f.: (4*x^4*(-5 - 26*x - 46*x^2 + 7*x^3 + 2*x^4))/(-1 + x)^3.