A289194 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has no isolated 1 in its base-2 representation.
1, 3, 2, 6, 4, 7, 8, 12, 5, 11, 9, 14, 16, 15, 13, 19, 21, 22, 10, 23, 17, 24, 18, 27, 29, 30, 26, 35, 52, 38, 25, 31, 32, 28, 33, 47, 34, 46, 20, 39, 40, 44, 36, 43, 37, 48, 41, 75, 53, 59, 61, 54, 57, 55, 58, 60, 64, 51, 65, 56, 66, 62, 50, 71, 45, 78, 42
Offset: 1
Examples
The first terms, alongside a(n)*a(n+1) in binary, are: n a(n) a(n)*a(n+1) in binary -- ---- --------------------- 1 1 11 2 3 110 3 2 1100 4 6 11000 5 4 11100 6 7 111000 7 8 1100000 8 12 111100 9 5 110111 10 11 1100011 11 9 1111110 12 14 11100000 13 16 11110000 14 15 11000011 15 13 11110111 16 19 110001111 17 21 111001110 18 22 11011100 19 10 11100110 20 23 110000111
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A289194
Programs
-
Mathematica
a = {1}; Do[k = 1; While[Nand[! MemberQ[a, k], ! MemberQ[Length /@ DeleteCases[Split[IntegerDigits[k Last[a], 2]], s_ /; First@ s == 0], 1]], k++]; AppendTo[a, k], {n, 2, 67}]; a (* Michael De Vlieger, Jun 29 2017 *)
Comments