cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A289199 a(n) is the number of odd integers divisible by 13 in the open interval (12*(n-1)^2, 12*n^2).

Original entry on oeis.org

0, 0, 2, 2, 3, 5, 5, 6, 7, 7, 9, 10, 10, 12, 12, 14, 14, 15, 17, 17, 18, 19, 19, 21, 22, 22, 24, 24, 26, 26, 27, 29, 29, 30, 31, 31, 33, 34, 34, 36, 36, 38, 38, 39, 41, 41, 42, 43, 43, 45, 46, 46, 48, 48, 50, 50, 51, 53, 53, 54, 55, 55, 57, 58, 58, 60, 60, 62, 62, 63, 65
Offset: 0

Views

Author

Ralf Steiner, Jun 28 2017

Keywords

Comments

This sequence has the form (0+12k, 0+12k, 2+12k, 2+12k, 3+12k, 5+12k, 5+12k, 6+12k, 7+12k, 7+12k, 9+12k, 10+12k, 10+12k) for k >= 0.
Theorems: A) Generally for an interval (2*m*(n-1)^2,2*m*n^2) and a divisor d with 2*m < d there is a unique d-length form (e_i+2*m*k)_{i=0..d-1, k>=0} with e_i in [0,2*m]; here m = 6, d = 13.
B) Sum_{i=0..d-1}e_i = m*(d-2); here 66 = 6*(13-2).
Proof:
A) In d consecutive intervals
(2*m*(n-1)^2,2*m*(n+2)^2) there are m*d*(2*k+d) consecutive odd numbers and therefore m*(2*k+d) multiples of d where k=floor((n-1)/d).
B) With initial value a(0)=0 we have a(d)=2*m and thus Sum_{i=0..d-1} e_i = Sum_{i=1..d}a(i)-a(d) = m(2*0+d)-2*m = m*(d-2). Q.E.D.

Crossrefs

Programs

  • Mathematica
    Table[Count[Mod[Table[2(6(n-1)^2 +k)-1,{k,12 n-6}],13],0],{n,0,70}]
  • PARI
    a(n)=(12*n^2+12)\26 - (12*n^2-24*n+25)\26 \\ Charles R Greathouse IV, Jun 29 2017
    
  • PARI
    concat(vector(2), Vec(x^2*(1 + x)*(1 - x + x^2)*(2 + x^2 + x^6 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)) + O(x^100))) \\ Colin Barker, Jul 03 2017

Formula

a(n + 13*k) = a(n) + 12*k.
a(n) = 12n/13 + O(1). - Charles R Greathouse IV, Jun 29 2017
From Colin Barker, Jul 03 2017: (Start)
G.f.: x^2*(1 + x)*(1 - x + x^2)*(2 + x^2 + x^6 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)).
a(n) = a(n-1) + a(n-13) - a(n-14) for n>13.
(End)
Showing 1-1 of 1 results.