cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289203 Number of maximum independent vertex sets in the n X n knight graph.

Original entry on oeis.org

1, 1, 2, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Eric W. Weisstein, Jun 28 2017

Keywords

Crossrefs

Cf. A000034.

Programs

  • Mathematica
    Table[Length[With[{g = KnightTourGraph[n, n]}, FindIndependentVertexSet[g, Length /@ FindIndependentVertexSet[g], All]]], {n, 8}]
    Table[Piecewise[{{1, n == 2}, {2, n == 3}, {6, n == 4}, {2, Mod[n, 2] == 0}, {1, Mod[n, 2] == 1}}], {n, 100}]
    Table[Piecewise[{{1, n == 2}, {2, n == 3}, {6, n == 4}}, ((-1)^n + 3)/2], {n, 100}]
    CoefficientList[Series[(-1 - x - x^2 - 5 x^3 + x^4 + 4 x^5)/(-1 + x^2), {x, 0, 20}],x]
  • Python
    def A289203(n): return (1,1,2,6)[n-1] if n<5 else 2-(n&1) # Chai Wah Wu, Feb 12 2024

Formula

For n > 4, a(n) = ((-1)^n + 3)/2.
G.f.: (x*(-1 - x - x^2 - 5*x^3 + x^4 + 4*x^5))/(-1 + x^2).