cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289205 a(1) = a(2) = a(3) = 1, a(4) = 3; a(n) = n - a(n-a(n-1)) - a(n-a(n-2)) for n > 4.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 2, 1, 6, 1, 9, 2, 1, 11, 1, 14, 2, 1, 16, 1, 19, 2, 1, 21, 1, 24, 2, 1, 26, 1, 29, 2, 1, 31, 1, 34, 2, 1, 36, 1, 39, 2, 1, 41, 1, 44, 2, 1, 46, 1, 49, 2, 1, 51, 1, 54, 2, 1, 56, 1, 59, 2, 1, 61, 1, 64, 2, 1, 66, 1, 69, 2, 1, 71, 1, 74, 2, 1, 76, 1, 79, 2, 1, 81, 1, 84, 2, 1, 86, 1, 89, 2, 1, 91, 1, 94, 2, 1, 96, 1, 99, 2, 1, 101
Offset: 1

Views

Author

Altug Alkan, Jun 28 2017

Keywords

Crossrefs

Cf. A244477.

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{1,1,1,3,1,4,2,1,6,1,9,2,1,11},120] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    q=vector(10^5); q[1]=q[2]=q[3]=1;q[4]=3; for(n=5, #q, q[n] = n-q[n-q[n-1]]-q[n-q[n-2]]); q
    
  • PARI
    Vec(x*(1 + x)*(1 + x^2 + 2*x^3 - x^4 + 3*x^5 - 3*x^6 + 2*x^7 - 2*x^8 + x^9 + x^10 - 2*x^11 + 2*x^12) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2) + O(x^100)) \\ Colin Barker, Jun 28 2017

Formula

a(5k) = a(5k + 3) = 1, a(5k + 1) = 5k - 1, a(5k + 2) = 2, a(5k + 4) = 5k + 1 for k > 0.
From Colin Barker, Jun 28 2017: (Start)
G.f.: x*(1 + x)*(1 + x^2 + 2*x^3 - x^4 + 3*x^5 - 3*x^6 + 2*x^7 - 2*x^8 + x^9 + x^10 - 2*x^11 + 2*x^12) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = 2*a(n-5) - a(n-10) for n>12.
(End)