A289207 a(n) = max(0, n-2).
0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 0
Examples
Array of differences begin: 0, 0, 0, 0, 0, 0, 0, 1, 4, 12, 30, 68, ... 0, 0, 0, 0, 0, 0, 1, 3, 8, 18, 38, 76, ... 0, 0, 0, 0, 0, 1, 2, 5, 10, 20, 38, 71, ... 0, 0, 0, 0, 1, 1, 3, 5, 10, 18, 33, 59, ... 0, 0, 0, 1, 0, 2, 2, 5, 8, 15, 26, 46, ... 0, 0, 1, -1, 2, 0, 3, 3, 7, 11, 20, 34, ... 0, 1, -2, 3, -2, 3, 0, 4, 4, 9, 14, 24, ... 1, -3, 5, -5, 5, -3, 4, 0, 5, 5, 10, 16, ... -4, 8, -10, 10, -8, 7, -4, 5, 0, 6, 6, 17, ... 12, -18, 20, -18, 15, -11, 9, -5, 6, 0, 7, 7, ... ...
Links
- OEIS Wiki, Autosequence
- Index entries for linear recurrences with constant coefficients, signature (2, -1).
Crossrefs
Programs
-
Mathematica
a[n_] := Max[0, n - 2]; D[n_, k_] /; k == n + 1 := a[n]; D[n_, k_] /; k == n + 2 := a[n]; D[n_, k_] /; k > n + 2 := D[n, k] = Sum[D[n + 1, j], {j, 0, k - 1}]; D[n_, k_] /; k <= n := D[n, k] = D[n - 1, k + 1] - D[n - 1, k]; Table[D[n, k], {n, 0, 11}, {k, 0, 11}]
Formula
G.f.: x^3 / (1-x)^2.
Comments