cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289224 Number of ways to select 3 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 4, 82, 670, 3028, 9780, 25574, 57862, 117800, 221268, 390010, 652894, 1047292, 1620580, 2431758, 3553190, 5072464, 7094372, 9743010, 13163998, 17526820, 23027284, 29890102, 38371590, 48762488, 61390900, 76625354, 94877982, 116607820, 142324228, 172590430, 208027174
Offset: 3

Views

Author

Heinrich Ludwig, Jun 28 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A289230.

Examples

			There are four ways to choose three 2 X 2 X 2 triangles (aaa, bbb, ccc) from a 4 X 4 X 4 point grid, for example:
      a           a
     a a         a a
    b c c       b . c
   b b c .     b b c c
The other 2 possible selections are rotations of the first one.
Note: aaa, bbb, ccc are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • Maple
    A289224:=n->(n^6-6*n^5-24*n^4+208*n^3-67*n^2-1684*n+2712)/6: seq(A289224(n), n=3..50); # Wesley Ivan Hurt, Jun 28 2017
  • Mathematica
    Table[(n^6 - 6 n^5 - 24 n^4 + 208 n^3 - 67 n^2 - 1684 n + 2712)/6, {n, 3, 34}] (* or *)
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 4, 82, 670, 3028, 9780, 25574}, 32] (* or *)
    Drop[#, 3] &@ CoefficientList[Series[2 x^4*(2 + 27 x + 90 x^2 - 40 x^3 - 38 x^4 + 19 x^5)/(1 - x)^7, {x, 0, 34}], x] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    a(n) = (n^6 - 6*n^5 - 24*n^4 + 208*n^3 - 67*n^2 - 1684*n + 2712)/6 \\ Charles R Greathouse IV, Jun 28 2017
    
  • PARI
    concat(0, Vec(2*x^4*(2 + 27*x + 90*x^2 - 40*x^3 - 38*x^4 + 19*x^5) / (1 - x)^7 + O(x^60))) \\ Colin Barker, Jun 29 2017

Formula

a(n) = (n^6 -6*n^5 -24*n^4 +208*n^3 -67*n^2 -1684*n +2712)/6.
From Colin Barker, Jun 29 2017: (Start)
G.f.: 2*x^4*(2 + 27*x + 90*x^2 - 40*x^3 - 38*x^4 + 19*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)