A289237 Find the first (maximal) string, of length exactly n, of consecutive primes that alternate between types 6*k+1 and 6*k+5 or 6*k+5 and 6*k+1. The first element is a(n).
53, 29, 67, 37, 449, 179, 5, 389, 89, 2213, 11149, 10369, 6761, 113341, 80447, 151909, 43777, 2964553, 1457333, 175573, 809, 3954889, 121930481, 96050953, 15186319, 296080717, 98380549, 77011289, 2720227693, 5696814287, 1572386903, 4136299357, 288413159
Offset: 1
Keywords
Examples
{Prime[k], Mod[Prime[k], 6]} = {2, 2}, {3, 3}, {5, 5}, {7, 1}, {11, 5}, {13, 1}, {17, 5}, {19, 1}, {23, 5}, {29, 5}, {31, 1}, {37, 1}, {41, 5}, {43, 1}, {47, 5}, {53, 5}, {59, 5}, {61, 1}, {67, 1}, {71, 5}, {73, 1}, {79, 1}, . ., so a(n) = 53, 29, 67, 37 for n = 1, 2, 3, 4 and a(7) = 5.
References
- R. K. Guy, Unsolved Problems in Number Theory, A4.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..43
- Jens Kruse Andersen, Consecutive Congruent Primes
Programs
-
Mathematica
i = 2; While[ Mod[ Prime[i] - Prime[i - 1], 6] != 0 || Mod[ Prime[i + 1] - Prime[i], 6] != 0, i++]; T = {Prime[i]}; Do[j = 3; While[ ! (Product[ Mod[ Prime[k + 1] - Prime[k], 6], {k, j, j + n}] != 0 && (Mod[ Prime[j] - Prime[j - 1], 6] == 0 || j == 3) && Mod[ Prime[j + n + 2] - Prime[j + n + 1], 6] == 0), j++]; T = Append[T, Prime[j]], {n, 0, 16}]; T
Extensions
a(19)-a(33) from Giovanni Resta, Jun 29 2017
Comments