cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289237 Find the first (maximal) string, of length exactly n, of consecutive primes that alternate between types 6*k+1 and 6*k+5 or 6*k+5 and 6*k+1. The first element is a(n).

Original entry on oeis.org

53, 29, 67, 37, 449, 179, 5, 389, 89, 2213, 11149, 10369, 6761, 113341, 80447, 151909, 43777, 2964553, 1457333, 175573, 809, 3954889, 121930481, 96050953, 15186319, 296080717, 98380549, 77011289, 2720227693, 5696814287, 1572386903, 4136299357, 288413159
Offset: 1

Views

Author

Jonathan Sondow, Jun 28 2017

Keywords

Comments

By the first Formula, a(21) = 809 since A289119(21) = 809 < A289119(22).

Examples

			{Prime[k], Mod[Prime[k], 6]} = {2, 2}, {3, 3}, {5, 5}, {7, 1}, {11, 5}, {13, 1}, {17, 5}, {19, 1}, {23, 5}, {29, 5}, {31, 1}, {37, 1}, {41, 5}, {43, 1}, {47, 5}, {53, 5}, {59, 5}, {61, 1}, {67,  1}, {71, 5}, {73, 1}, {79, 1}, . ., so a(n) = 53, 29, 67, 37 for n = 1, 2, 3, 4 and a(7) = 5.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A4.

Crossrefs

Programs

  • Mathematica
    i = 2; While[ Mod[ Prime[i] - Prime[i - 1], 6] != 0 || Mod[ Prime[i + 1] - Prime[i], 6] != 0, i++]; T = {Prime[i]}; Do[j = 3; While[ ! (Product[ Mod[ Prime[k + 1] - Prime[k], 6], {k, j, j + n}] != 0 && (Mod[ Prime[j] - Prime[j - 1], 6] == 0 || j == 3) && Mod[ Prime[j + n + 2] - Prime[j + n + 1], 6] == 0), j++]; T = Append[T, Prime[j]], {n, 0, 16}]; T

Formula

a(n) = A289119(n) if and only if n > 1 and A289119(n) < A289119(n+1).

Extensions

a(19)-a(33) from Giovanni Resta, Jun 29 2017