cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289255 a(n) = 4^n - 2*n - 1.

Original entry on oeis.org

1, 11, 57, 247, 1013, 4083, 16369, 65519, 262125, 1048555, 4194281, 16777191, 67108837, 268435427, 1073741793, 4294967263, 17179869149, 68719476699, 274877906905, 1099511627735, 4398046511061, 17592186044371, 70368744177617, 281474976710607, 1125899906842573
Offset: 1

Views

Author

Eric W. Weisstein, Jun 29 2017

Keywords

Comments

Number of dominating sets in the n-cocktail party graph.

Crossrefs

Cf. A000302, A005408, A096046 (first differences).

Programs

  • Mathematica
    Table[4^n - 2 n - 1, {n, 20}]
    LinearRecurrence[{6, -9, 4}, {1, 11, 57}, 20]
    CoefficientList[Series[(-1 - 5 x)/((-1 + x)^2 (-1 + 4 x)), {x, 0, 20}], x]
  • PARI
    Vec(x*(1 + 5*x) / ((1 - x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jun 30 2017

Formula

a(n) = 4^n - 2*n - 1.
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3).
G.f.: (-1 - 5*x)*x/((-1 + x)^2*(-1 + 4*x)).
From Elmo R. Oliveira, Apr 02 2025: (Start)
E.g.f.: exp(x)*(exp(3*x) - (2*x + 1)).
a(n) = A000302(n) - A005408(n). (End)