A289280 a(n) = least integer k > n such that any prime factor of k is also a prime factor of n.
4, 9, 8, 25, 8, 49, 16, 27, 16, 121, 16, 169, 16, 25, 32, 289, 24, 361, 25, 27, 32, 529, 27, 125, 32, 81, 32, 841, 32, 961, 64, 81, 64, 49, 48, 1369, 64, 81, 50, 1681, 48, 1849, 64, 75, 64, 2209, 54, 343, 64, 81, 64, 2809, 64, 121, 64, 81, 64, 3481, 64, 3721
Offset: 2
Keywords
Examples
For n = 42: - 42 = 2 * 3 * 7, hence P_42 = { 2, 3, 7 }, - the P_42-smooth numbers are: 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 27, 28, 32, 36, 42, 48, 49, ... - hence a(42) = 48. From _Michael De Vlieger_, Jul 02 2017: (Start) a(n) divides n^m with m >= 2: n a(n) m 2 4 2 3 9 2 4 8 2 5 25 2 6 8 3 7 49 2 8 16 2 9 27 2 10 16 4 11 121 2 12 16 2 13 169 2 14 16 4 15 25 2 16 32 2 17 289 2 18 24 3 19 361 2 20 25 2 (End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 2..10000
- Rémy Sigrist, PARI program for A289280
- Rémy Sigrist, Scatterplot of the ordinal transform of the first 100000 terms
- Rémy Sigrist, Logarithmic scatterplot of the first 100000 terms
Programs
-
Mathematica
Table[Which[PrimeQ@ n, n^2, PrimePowerQ@ n, Block[{p = 2, e}, While[Set[e, IntegerExponent[n, p]] == 0, p = NextPrime@ p]; p^(e + 1)], True, Block[{k = n + 1}, While[PowerMod[n, k, k] != 0, k++]; k]], {n, 2, 61}] (* Michael De Vlieger, Jul 02 2017 *)
-
PARI
\\ See Links section.
Comments