A109817
G.f.: 12th root of Eisenstein series E_6 (cf. A013973).
Original entry on oeis.org
1, -42, -11088, -3774624, -1472710974, -617481728640, -270883381218912, -122585272771463040, -56747118995519331456, -26727350506044696990762, -12760853360973370821796320, -6159994719956314185540737376, -3000691311646502407278581263104, -1472883416501251994527873967792256
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..367
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
E_6^(k/12): this sequence (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; s = 6; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
A289292
Coefficients in expansion of E_4^(1/2).
Original entry on oeis.org
1, 120, -6120, 737760, -107249640, 17385063120, -3014720249760, 547287510713280, -102701836021530600, 19762301660609250840, -3878226140959368843120, 773209219953012480001440, -156173318001506652330786720, 31888935085481430265623676560
Offset: 0
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
A289326
Coefficients in expansion of E_6^(1/4).
Original entry on oeis.org
1, -126, -27972, -8603784, -3156774138, -1265670056952, -536028623834760, -235629947944839168, -106414175763732002292, -49052892961209924090486, -22977990271885179647877768, -10904016663130642099838196120
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2), this sequence (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289325
Coefficients in expansion of E_6^(1/6).
Original entry on oeis.org
1, -84, -20412, -6617856, -2505409788, -1027549673640, -442991672331264, -197605206331169280, -90359564898413083644, -42105781947560460595284, -19913609001700051596476280, -9531377528273693889501019392
Offset: 0
From _Seiichi Manyama_, Jul 08 2017: (Start)
2F1(1/12, 7/12; 1; 1728/(1728 - j))
= 1 - A289557(1)/(j - 1728) + A289557(2)/(j - 1728)^2 - A289557(3)/(j - 1728)^3 + ...
= 1 - 84/(j - 1728) + 62244/(j - 1728)^2 - 64318800/(j - 1728)^3 + ...
= 1 - 84*q - 82656*q^2 - 64795248*q^3 - ...
+ 62244*q^2 + 122496192*q^3 + ...
- 64318800*q^3 - ...
+ ...
= 1 - 84*q - 20412*q^2 - 6617856*q^3 - ... (End)
E_6^(k/12):
A109817 (k=1), this sequence (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(1/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289327
Coefficients in expansion of E_6^(1/3).
Original entry on oeis.org
1, -168, -33768, -9806496, -3482370024, -1364023149552, -567278132268960, -245678241438057792, -109559333350138970088, -49951945835561166375048, -23173552482577051154061168, -10901813191731667585777068000
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2),
A289326 (k=3), this sequence (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(1/3), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289328
Coefficients in expansion of E_6^(5/12).
Original entry on oeis.org
1, -210, -37800, -10300080, -3534651750, -1351633962672, -551776752641520, -235367241169341120, -103623939263346377400, -46723958347194591810690, -21464711387762586693907248, -10009787904868201520473221840
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(5/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289291
Coefficients in expansion of E_2^(1/2).
Original entry on oeis.org
1, -12, -108, -1344, -22044, -409752, -8201088, -172293504, -3746915388, -83625518604, -1904468689368, -44079484775616, -1033852665619200, -24518163456010392, -586936016770722048, -14164129272396668544, -344209494372831399036
Offset: 0
A289345
Coefficients in expansion of E_6^(7/12).
Original entry on oeis.org
1, -294, -40572, -9456216, -3013531458, -1095736644072, -430427492908056, -177966281438573376, -76323096421188881292, -33643171872410204427918, -15150435131179232328586968, -6940567145625149028384495432
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6), this sequence (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(7/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289346
Coefficients in expansion of E_6^(2/3).
Original entry on oeis.org
1, -336, -39312, -8266944, -2529479568, -895678457184, -344891780549568, -140330667583849344, -59379605532142099344, -25873741825665005773200, -11534062764689844375098592, -5236325710480558290644292672
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7), this sequence (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(2/3), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289347
Coefficients in expansion of E_6^(3/4).
Original entry on oeis.org
1, -378, -36288, -6664896, -1950813774, -672039262944, -253536117254784, -101485291597998336, -42360328701954544176, -18242860786892766495450, -8049299329628263783504512, -3621056234759774113947852096
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8), this sequence (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(3/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
Showing 1-10 of 17 results.