A289304 Expansion of (q*j(q))^(5/12) where j(q) is the elliptic modular invariant (A000521).
1, 310, 14765, -232770, 40539830, -5199871688, 765038308115, -121140033966330, 20242157273780710, -3521886754264327670, 632344647471171938140, -116428917411726531951590, 21883035176258955622401245
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..425
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(5/4) / (2*QPochhammer[-1, x])^10, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *) (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(5/12) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(5*A192731(n)/12).
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(9/4), where c = 0.232272469556851820006346410170543574844213494230850435863953522617... = 5 * 3^(5/4) * Gamma(1/4) * Gamma(1/3)^(15/2) / (2^(23/4) * exp(5 * Pi / (4 * sqrt(3))) * Pi^6). - Vaclav Kotesovec, Jul 03 2017, updated Mar 06 2018