A289305 Expansion of (q*j(q))^(11/24) where j(q) is the elliptic modular invariant (A000521).
1, 341, 21527, -244112, 50791235, -6177875286, 883458515093, -136541356378141, 22354744100161913, -3821528558157433970, 675604462786881129711, -122689458583136157060647, 22774615293799045532223797
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..426
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(11/8) / (2*QPochhammer[-1, x])^11, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *) (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(11/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(11*A192731(n)/24).
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(19/8), where c = 0.3243413869190225417519777558769755719610962636852073820509897134587... = 11 * 3^(19/8) * sqrt(2 + sqrt(2)) * Gamma(1/3)^(33/4) * Gamma(3/8) / (2^(67/8) * exp(11 * Pi / (8 * sqrt(3))) * Pi^(13/2)). - Vaclav Kotesovec, Jul 03 2017, updated Mar 06 2018
Comments