A289312 The number of upper-triangular matrices with integer entries whose absolute sum is equal to n, and each row and column contains at least one nonzero entry.
1, 2, 6, 26, 142, 946, 7446, 67658, 697118, 8031586, 102312486, 1427905658, 21666671534, 355138949394, 6253348428598, 117720540700842, 2359368991571518, 50157679523340994, 1127327559500923974, 26709016625807923418, 665292778385210384078
Offset: 0
Examples
a(2) = 6: The six upper triangular matrices of size 2 with no zero rows or columns are (+-2) and /+-1 0\ | |. \0 +-1/
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Ankush Goswami, Abhash Kumar Jha, Byungchan Kim, and Robert Osburn, Asymptotics and sign patterns for coefficients in expansions of Habiro elements, arXiv:2204.02628 [math.NT], 2022.
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
Programs
-
Maple
G:= add(mul(1 - ((1-x)/(1+x))^k, k=1..n),n=0..20): S:= series(G,x,21): seq(coeff(S,x,j),j=0..20); # Peter Bala, Jul 24 2017
-
Mathematica
m = 21; Sum[Product[1 - ((1-x)/(1+x))^k + O[x]^m, {k, 1, n}], {n, 0, m}] // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2020 *)
Formula
G.f.: Sum_{n >= 0} Product_{k = 1..n} 1 - ((1 - x)/(1 + x))^k.
Alternative g.f.: Sum_{n >= 0} ((1 + x)/(1 - x))^(n+1) * Product_{k = 1..n} 1 - ((1 + x)/(1 - x))^k.
G.f.: B(2*x/(1+x)) where B(x) is the g.f. of A022493. - Michael D. Weiner, Feb 28 2019
a(n) ~ 2^(2*n + 5/2) * 3^(n + 3/2) * n^(n+1) / (exp(n) * Pi^(2*n+2)). - Vaclav Kotesovec, Aug 31 2023
Comments