A289313 The number of upper-triangular matrices with integer entries whose absolute sum is equal to n and such that each row contains a nonzero entry.
1, 2, 10, 74, 722, 8786, 128218, 2182554, 42456226, 929093538, 22590839466, 604225121258, 17630145814898, 557285515817970, 18970857530674554, 691929648113663802, 26919562120779248962, 1112769248605003393858, 48704349211392743606602
Offset: 0
Examples
a(2) = 10: The ten generalized row-Fishburn matrices of size 2 are (+-2), /+-1 0\ and /0 +-1\ | | | | \0 +-1/ \0 +-1/.
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..200
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
Programs
-
Maple
G:= add(mul( ((1 + x)/(1 - x))^i - 1, i=1..n),n=0..20): S:= series(G,x,21): seq(coeff(S,x,j),j=0..20); # Peter Bala, Jul 24 2017
Formula
O.g.f.: Sum_{n >= 0} ( Product_{i = 1..n} ((1 + x)/(1 - x))^i - 1 ).
The o.g.f. has several alternative forms:
Sum_{n >= 0} ( Product_{i = 1..n} ( 1 - ((1 - x)/(1 + x))^(2*i-1) ) );
Sum_{n >= 0} ((1 - x)/(1 + x))^(n+1) * ( Product_{i = 1..n} 1 - ((1 - x)/(1 + x))^(2*i) );
1/2*( 1 + Sum_{n >= 0} ((1 + x)/(1 - x))^((n+1)*(n+2)/2) * Product_{i = 1..n} ( 1 - ((1 - x)/(1 + x))^i ) ).
Conjectural g.f.: Sum_{n >= 0} ((1 + x)/(1 - x))^((n+1)*(2*n+1)) * Product_{i = 1..2*n} ( ((1 - x)/(1 + x))^i - 1 ).
a(n) ~ 2^(3*n+2) * 3^(n+1) * n^(n + 1/2) / (exp(n) * Pi^(2*n + 3/2)). - Vaclav Kotesovec, Aug 31 2023
Comments