A289316 The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row contains a nonzero entry.
1, 1, 2, 8, 37, 219, 1557, 12994, 124427, 1344506, 16178891, 214522339, 3107144562, 48805300668, 826268787588, 14998055299920, 290550119360174, 5983278021430064, 130512410617529321, 3006012061455129053, 72900477505718600661
Offset: 0
Examples
a(3) = 8: The eight row-Fishburn matrices of size 3 with odd nonzero entries are (3) /1 1\ \0 1/ /1 0 0\ /0 1 0\ /0 0 1\ |0 1 0| |0 1 0| |0 1 0| \0 0 1/ \0 0 1/ \0 0 1/ /1 0 0\ /0 1 0\ /0 0 1\ |0 0 1| |0 0 1| |0 0 1| \0 0 1/ \0 0 1/ \0 0 1/
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..200
- Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
Programs
-
Maple
C:= x -> x/(1 - x^2): G:= add(mul( (1 + C(x))^k - 1, k=1..n),n=0..20): S:= series(G,x,21): seq(coeff(S,x,j),j=0..20);
Formula
G.f.: A(x) = Sum_{n >= 0} Product_{k = 1..n} ( (1 + x/(1 - x^2))^k - 1 ).
a(n) ~ 12^(n+1) * n^(n + 1/2) / (exp(n + Pi^2/24) * Pi^(2*n + 3/2)). - Vaclav Kotesovec, Aug 31 2023
Comments