A289317 The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row and each column contains a nonzero entry.
1, 1, 1, 3, 7, 23, 84, 364, 1792, 9953, 61455, 417720, 3098515, 24902930, 215538825, 1998518430, 19761943208, 207571259703, 2307812703419, 27075591512866, 334263981931669
Offset: 0
Examples
a(4) = 7: The Fishburn matrices of size 4 with odd nonzero entries are /3 0\ /1 0\ \0 1/ \0 3/ /1 1 0\ /1 0 1\ /1 0 0\ |0 1 0| |0 1 0| |0 1 1| \0 0 1/ \0 0 1/ \0 0 1/ /1 1 0\ |0 0 1| \0 0 1/ /1 0 0 0\ |0 1 0 0| |0 0 1 0| \0 0 0 1/
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..200
- Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
Programs
-
Maple
C:= x -> x/(1 - x^2): G:= add(mul( 1 - 1/(1 + C(x))^k, k=1..n), n=0..20): S:= series(G,x,21): seq(coeff(S,x,j),j=0..20);
Formula
G.f.: A(x) = Sum_{n >= 0} Product_{k = 1..n} ( 1 - 1/(1 + x/(1 - x^2))^k ).
a(n) ~ 2^(n + 5/2) * 3^(n + 3/2) * n^(n+1) / (exp(n + Pi^2/12) * Pi^(2*n + 2)). - Vaclav Kotesovec, Aug 31 2023
Comments