A289348 Coefficients in expansion of E_6^(5/6).
1, -420, -31500, -4724160, -1314429900, -440028142344, -162555920654400, -63990327056960640, -26341675849615282380, -11210298679649742846180, -4895195936831699458605912, -2181913188022929464292248640
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(5/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(5*A288851(n)/6).
a(n) ~ c * exp(2*Pi*n) / n^(11/6), where c = -5 * 3^(1/6) * Gamma(1/4)^(40/3) / (2048*sqrt(2) * Pi^(19/2) * Gamma(1/3)^2) = -0.1571123439957640423587958439875289712533650298096956968521099309872... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018