A289349 Coefficients in expansion of E_6^(11/12).
1, -462, -24948, -2518824, -654112074, -212483064024, -76819071738024, -29728723632736128, -12066341379893331300, -5073593348593538950566, -2192302482140061697816872, -968086916154014421082349304, -435126775136273350146250044888
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(11/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(11*A288851(n)/12).
a(n) ~ c * exp(2*Pi*n) / n^(23/12), where c = -11 * 2^(5/12) * 3^(5/6) * Pi^(11/3) / (128 * Gamma(1/12) * Gamma(3/4)^(44/3)) = -0.08406022472181281739983743854923746657261382508944840919197295490535... - Vaclav Kotesovec, Jul 08 2017
Comments