A289478 Number of Dyck paths of semilength 8*n and height n.
1, 1, 32767, 2962826465, 302279227822132, 28940151142665744800, 2518778621914294827210397, 200931623862007000173683722721, 14934414860406931133627906259665137, 1050339437420146526008731445371770861951, 70783666464470090848536562606347425026054174
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..210
Crossrefs
Column k=8 of A289481.
Programs
-
Maple
b:= proc(x, y, k) option remember; `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+ `if`(y < min(x-1, k), b(x-1, y+1, k), 0)) end: a:= n-> `if`(n=0, 1, b(16*n, 0, n)-b(16*n, 0, n-1)): seq(a(n), n=0..20);
-
Mathematica
b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y
Indranil Ghosh, Jul 07 2017, after Maple code *)
Formula
a(n) ~ 2^(64*n + 9/2) / (3^(18*n + 7) * 7^(7*n + 1/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017