A289479 Number of Dyck paths of semilength 9*n and height n.
1, 1, 131071, 53249182309, 24707711028329725, 10683679703096752747668, 4147304882800594101766257490, 1455763914060254648633279812633997, 470172045819740629127626302976354304026, 142143740345412121643458345045577780672138977
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..186
Crossrefs
Column k=9 of A289481.
Programs
-
Maple
b:= proc(x, y, k) option remember; `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+ `if`(y < min(x-1, k), b(x-1, y+1, k), 0)) end: a:= n-> `if`(n=0, 1, b(18*n, 0, n)-b(18*n, 0, n-1)): seq(a(n), n=0..20);
-
Mathematica
b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y
Indranil Ghosh, Jul 07 2017, after Maple code *)
Formula
a(n) ~ 3^(36*n + 1) / (2^(16*n + 2)* 5^(10*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017