A289480 Number of Dyck paths of semilength 10*n and height n.
1, 1, 524287, 956185155129, 2011805242484811913, 3913893675608035491579363, 6753921048102794214403632812402, 10404372657815158859307324171401493273, 14572291057533118353907127088834174993619633, 18906515358804836479733610566557899759396278209535
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..167
Crossrefs
Column k=10 of A289481.
Programs
-
Maple
b:= proc(x, y, k) option remember; `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+ `if`(y < min(x-1, k), b(x-1, y+1, k), 0)) end: a:= n-> `if`(n=0, 1, b(20*n, 0, n)-b(20*n, 0, n-1)): seq(a(n), n=0..20);
-
Mathematica
b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y
Indranil Ghosh, Jul 08 2017 *)
Formula
a(n) ~ 2^(40*n + 7/2) * 5^(20*n + 1/2) / (3^(18*n + 1) * 11^(11*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017
Comments