cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289480 Number of Dyck paths of semilength 10*n and height n.

Original entry on oeis.org

1, 1, 524287, 956185155129, 2011805242484811913, 3913893675608035491579363, 6753921048102794214403632812402, 10404372657815158859307324171401493273, 14572291057533118353907127088834174993619633, 18906515358804836479733610566557899759396278209535
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2017

Keywords

Comments

In general, column k>1 of A289481 is asymptotic to 2^(2*k*n + 3) * k^(2*k*n + 1/2) / ((k-1)^((k-1)*n + 1/2) * (k+1)^((k+1)*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017

Crossrefs

Column k=10 of A289481.

Programs

  • Maple
    b:= proc(x, y, k) option remember;
          `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+
          `if`(y <  min(x-1, k), b(x-1, y+1, k), 0))
        end:
    a:= n-> `if`(n=0, 1, b(20*n, 0, n)-b(20*n, 0, n-1)):
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[yIndranil Ghosh, Jul 08 2017 *)

Formula

a(n) ~ 2^(40*n + 7/2) * 5^(20*n + 1/2) / (3^(18*n + 1) * 11^(11*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017