A289481 Number A(n,k) of Dyck paths of semilength k*n and height n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 7, 1, 0, 1, 1, 31, 57, 1, 0, 1, 1, 127, 1341, 484, 1, 0, 1, 1, 511, 26609, 59917, 4199, 1, 0, 1, 1, 2047, 497845, 5828185, 2665884, 36938, 1, 0, 1, 1, 8191, 9096393, 517884748, 1244027317, 117939506, 328185, 1, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, ... 0, 1, 7, 31, 127, 511, ... 0, 1, 57, 1341, 26609, 497845, ... 0, 1, 484, 59917, 5828185, 517884748, ... 0, 1, 4199, 2665884, 1244027317, 517500496981, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..80, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, k) option remember; `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+ `if`(y < min(x-1, k), b(x-1, y+1, k), 0)) end: A:= (n, k)-> `if`(n=0, 1, b(2*n*k, 0, n)-b(2*n*k, 0, n-1)): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y
Indranil Ghosh, Jul 07 2017, after Maple code *)
Comments