cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289481 Number A(n,k) of Dyck paths of semilength k*n and height n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 7, 1, 0, 1, 1, 31, 57, 1, 0, 1, 1, 127, 1341, 484, 1, 0, 1, 1, 511, 26609, 59917, 4199, 1, 0, 1, 1, 2047, 497845, 5828185, 2665884, 36938, 1, 0, 1, 1, 8191, 9096393, 517884748, 1244027317, 117939506, 328185, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2017

Keywords

Comments

For fixed k > 1, A(n,k) ~ 2^(2*k*n + 3) * k^(2*k*n + 1/2) / ((k-1)^((k-1)*n + 1/2) * (k+1)^((k+1)*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017

Examples

			Square array A(n,k) begins:
  1, 1,    1,       1,          1,            1, ...
  0, 1,    1,       1,          1,            1, ...
  0, 1,    7,      31,        127,          511, ...
  0, 1,   57,    1341,      26609,       497845, ...
  0, 1,  484,   59917,    5828185,    517884748, ...
  0, 1, 4199, 2665884, 1244027317, 517500496981, ...
		

Crossrefs

Rows n=0-2 give: A000012, A057427, A083420(k+1).
Main diagonal gives A289482.
Cf. A080936.

Programs

  • Maple
    b:= proc(x, y, k) option remember;
          `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+
          `if`(y <  min(x-1, k), b(x-1, y+1, k), 0))
        end:
    A:= (n, k)-> `if`(n=0, 1, b(2*n*k, 0, n)-b(2*n*k, 0, n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[yIndranil Ghosh, Jul 07 2017, after Maple code *)