A289509 Numbers k such that the gcd of the indices j for which the j-th prime prime(j) divides k is 1.
2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1
Keywords
Examples
6 is a term because 6 = p_1*p_2 and gcd(1,2) = 1. From _Gus Wiseman_, Apr 13 2018: (Start) Sequence of integer partitions with relatively prime parts begins: 02 : (1) 04 : (11) 06 : (21) 08 : (111) 10 : (31) 12 : (211) 14 : (41) 15 : (32) 16 : (1111) 18 : (221) 20 : (311) 22 : (51) 24 : (2111) 26 : (61) 28 : (411) 30 : (321) 32 : (11111) 33 : (52) 34 : (71) 35 : (43) 36 : (2211) 38 : (81) 40 : (3111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Maple
p:=1:for ind to 10000 do p:=nextprime(p);primeindex[p]:=ind;od: out:=[]:for n from 2 to 100 do m:=[];f:=ifactors(n)[2];g:=0; for k to nops(f) do mk:=primeindex[f[k][1]];m:=[op(m),mk]; g:=gcd(g,mk);od; if g=1 then out:=[op(out),n];fi;od:out;
-
Mathematica
Select[Range[200],GCD@@PrimePi/@FactorInteger[#][[All,1]]===1&] (* Gus Wiseman, Apr 13 2018 *)
-
PARI
isok(n) = my(f=factor(n)); gcd(apply(x->primepi(x), f[,1])) == 1; \\ Michel Marcus, Jul 19 2017
-
Python
from sympy import gcd, primepi, primefactors def ok(n): return gcd([primepi(p) for p in primefactors(n)]) == 1 print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Aug 06 2017
Comments