cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289509 Numbers k such that the gcd of the indices j for which the j-th prime prime(j) divides k is 1.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Christopher J. Smyth, Jul 11 2017

Keywords

Comments

Any integer k in the sequence encodes (by 'Heinz encoding' cf. A056239) a multiset of integers whose gcd is 1, namely the multiset containing r_j copies of j if k factors as Product_j prime(j)^{r_j} with gcd_j j = 1.
Clearly the sequence contains all even numbers and no odd primes or odd prime powers. It also clearly contains all numbers that are divisible by consecutive primes.
The sequence is the list of those k such that A289508(k) = 1.
It is also the list of those k such that A289506(k) = A289507(k).
Heinz numbers of integer partitions with relatively prime parts, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 13 2018

Examples

			6 is a term because 6 = p_1*p_2 and gcd(1,2) = 1.
From _Gus Wiseman_, Apr 13 2018: (Start)
Sequence of integer partitions with relatively prime parts begins:
02 : (1)
04 : (11)
06 : (21)
08 : (111)
10 : (31)
12 : (211)
14 : (41)
15 : (32)
16 : (1111)
18 : (221)
20 : (311)
22 : (51)
24 : (2111)
26 : (61)
28 : (411)
30 : (321)
32 : (11111)
33 : (52)
34 : (71)
35 : (43)
36 : (2211)
38 : (81)
40 : (3111)
(End)
		

Crossrefs

Programs

  • Maple
    p:=1:for ind to 10000 do p:=nextprime(p);primeindex[p]:=ind;od:
    out:=[]:for n from 2 to 100 do m:=[];f:=ifactors(n)[2];g:=0;
    for k to nops(f) do mk:=primeindex[f[k][1]];m:=[op(m),mk];
    g:=gcd(g,mk);od; if g=1 then out:=[op(out),n];fi;od:out;
  • Mathematica
    Select[Range[200],GCD@@PrimePi/@FactorInteger[#][[All,1]]===1&] (* Gus Wiseman, Apr 13 2018 *)
  • PARI
    isok(n) = my(f=factor(n)); gcd(apply(x->primepi(x), f[,1])) == 1; \\ Michel Marcus, Jul 19 2017
    
  • Python
    from sympy import gcd, primepi, primefactors
    def ok(n): return gcd([primepi(p) for p in primefactors(n)]) == 1
    print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Aug 06 2017