A289520 Numbers that are the sum of distinct squares of triangular numbers (A000537).
0, 1, 9, 10, 36, 37, 45, 46, 100, 101, 109, 110, 136, 137, 145, 146, 225, 226, 234, 235, 261, 262, 270, 271, 325, 326, 334, 335, 361, 362, 370, 371, 441, 442, 450, 451, 477, 478, 486, 487, 541, 542, 550, 551, 577, 578, 586, 587, 666, 667, 675, 676, 702, 703, 711, 712, 766, 767, 775, 776, 784, 785, 793, 794
Offset: 1
Keywords
Examples
37 is in the sequence because 37 = 1 + 36 = 1^2 + (1 + 2 + 3)^2 = 1^3 + 1^3 + 2^3 + 3^3.
Links
Programs
-
Mathematica
max = 800; f[x_] := Product[1 + x^(k (k + 1)/2)^2, {k, 1, 10}]; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, max}]]
Formula
Exponents in expansion of Product_{k>=1} (1 + x^(k*(k+1)/2)^2).