A289325 Coefficients in expansion of E_6^(1/6).
1, -84, -20412, -6617856, -2505409788, -1027549673640, -442991672331264, -197605206331169280, -90359564898413083644, -42105781947560460595284, -19913609001700051596476280, -9531377528273693889501019392
Offset: 0
Keywords
Examples
From _Seiichi Manyama_, Jul 08 2017: (Start) 2F1(1/12, 7/12; 1; 1728/(1728 - j)) = 1 - A289557(1)/(j - 1728) + A289557(2)/(j - 1728)^2 - A289557(3)/(j - 1728)^3 + ... = 1 - 84/(j - 1728) + 62244/(j - 1728)^2 - 64318800/(j - 1728)^3 + ... = 1 - 84*q - 82656*q^2 - 64795248*q^3 - ... + 62244*q^2 + 122496192*q^3 + ... - 64318800*q^3 - ... + ... = 1 - 84*q - 20412*q^2 - 6617856*q^3 - ... (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..367
- R. S. Maier, Nonlinear differential equations satisfied by certain classical modular forms, arXiv:0807.1081 [math.NT], 2008-2010, p. 34 equation (7.30).
Crossrefs
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(1/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(A288851(n)/6).
G.f.: 2F1(1/12, 7/12; 1; 1728/(1728-j)) where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 07 2017
a(n) ~ c * exp(2*Pi*n) / n^(7/6), where c = -Gamma(1/4)^(8/3) * Gamma(1/3)^2 / (2^(9/2) * 3^(1/6) * Pi^(7/2)) = -0.149083170913265334790743918765758886634155... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018