A289563 Coefficients of 1/(q*(j(q)-1728))^4 where j(q) is the elliptic modular invariant.
1, 3936, 8895024, 15094625920, 21336320693400, 26506772152211520, 29887990556174431424, 31237788209244729015552, 30709242534935581933885740, 28700724444538653431660487520, 25706227251014342788669659769056, 22202613798662970539127791744222592
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..361
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(-4*A289061(n)).
a(n) ~ c * exp(2*Pi*n) * n^7, where c = Gamma(3/4)^32 * exp(8*Pi) / (55540601303040 * Pi^8) = 0.0001042996202910562374208781457852661312263780276025385904... - Vaclav Kotesovec, Mar 07 2018