A289569 Coefficients in expansion of 1/E_14^(1/2).
1, 12, 98532, 22675584, 16099478436, 6580135809432, 3539736295913088, 1699883073000957696, 871767496424764386468, 438331617201642108107916, 224266585355757815798085192, 114622723650418140746841457536, 58945651172799536532104421386880
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..367
Crossrefs
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(-A289029(n)/2).
a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 0.3764946174077880880364705796802173599460310621830541667074693852949... = 2^(9/2) * Gamma(3/4)^16 / (9 * Pi^(9/2)). - Vaclav Kotesovec, Jul 09 2017, updated Mar 07 2018