A289625 a(n) = prime factorization encoding of the structure of the multiplicative group of integers modulo n.
1, 1, 4, 4, 16, 4, 64, 36, 64, 16, 1024, 36, 4096, 64, 144, 144, 65536, 64, 262144, 144, 576, 1024, 4194304, 900, 1048576, 4096, 262144, 576, 268435456, 144, 1073741824, 2304, 9216, 65536, 36864, 576, 68719476736, 262144, 36864, 3600, 1099511627776, 576, 4398046511104, 9216, 36864, 4194304, 70368744177664, 3600, 4398046511104, 1048576, 589824, 36864
Offset: 1
Keywords
Examples
For n=5, the multiplicative group modulo 5 is isomorphic to C_4, which does not factorize to smaller subgroups, thus a(5) = 2^4 = 16. For n=8, the multiplicative group modulo 8 is isomorphic to C_2 x C_2, thus a(8) = 2^2 * 3^2 = 36. For n=15, the multiplicative group modulo 15 is isomorphic to C_4 x C_2, thus a(15) = 2^4 * 3^2 = 144.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1024
- The PARI group, Catalogue of GP/PARI Functions: Arithmetic functions, function znstar
- Eric Weisstein's World of Mathematics, Modulo Multiplication Group.
- Wikipedia, Multiplicative group of integers modulo n
Crossrefs
Programs
-
PARI
A289625(n) = { my(m=1,p=2,v=znstar(n)[2]); for(i=1,length(v),m *= p^v[i]; p = nextprime(p+1)); (m); };
Comments