A289635 Coefficients in expansion of -q*E'_2/E_2 where E_2 is the Eisenstein Series (A006352).
24, 720, 19296, 517920, 13893264, 372707136, 9998360256, 268219317312, 7195339794744, 193024557070560, 5178140391612960, 138910500937231488, 3726458885094926160, 99967214347459657344, 2681753442755678231616
Offset: 1
Keywords
Examples
a(1) = - A006352(1)*1 = 24, a(2) = -(A006352(1)*a(1)) - A006352(2)*2 = 720, a(3) = -(A006352(1)*a(2) + A006352(2)*a(1)) - A006352(3)*3 = 19296, a(4) = -(A006352(1)*a(3) + A006352(2)*a(2) + A006352(3)*a(1)) - A006352(4)*4 = 517920.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..700
Crossrefs
Programs
-
Mathematica
nmax = 20; Rest[CoefficientList[Series[24*x*Sum[k*DivisorSigma[1, k]*x^(k-1), {k, 1, nmax}]/(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
Formula
a(n) = Sum_{d|n} d * A288968(d).
G.f.: 1/12 * E_4/E_2 - 1/12 * E_2.
a(n) ~ 1 / r^n, where r = A211342 = 0.037276810296451658150980785651644618... is the root of the equation Sum_{k>=1} A000203(k) * r^k = 1/24. - Vaclav Kotesovec, Jul 09 2017