cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289684 Mixing moments for the waiting time in an M/G/1 waiting queue.

Original entry on oeis.org

1, 2, 9, 42, 199, 950, 4554, 21884, 105323, 507398, 2446022, 11796884, 56912838, 274630876, 1325431956, 6397576888, 30882340531, 149084312006, 719736965358, 3474807470756, 16776410481266, 80998307687668, 391074406408716, 1888199373821896, 9116752061308798
Offset: 0

Views

Author

R. J. Mathar, Jul 09 2017

Keywords

Comments

In the preprint and the paper by Karpov et al., a(n) (resp. 2*a(n)) is the size of the Condorcet domain on 2*n (resp. 2*n+1) alternatives defined by the so-called even 1N33N1 scheme, cf. A144685. - Andrey Zabolotskiy, Jan 27 2024

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({n*a(n) +2*(-4*n+3)*a(n-1) +12*(n-2)*a(n-2) +8*(2*n-3)*a(n-3),a(0)=1,a(1)=2,a(2)=9,a(3)=42},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Mar 31 2019
  • Mathematica
    CoefficientList[2 x^2/(4 x^2 + 2x + Sqrt[1 - 4x] - 1) + O[x]^25, x] (* Jean-François Alcover, Aug 26 2022 *)
  • Sage
    (2*x^2/(4*x^2+2*x+sqrt(1-4*x)-1)).series(x, 25).coefficients(x, sparse=False) # Stefano Spezia, Mar 19 2025

Formula

G.f.: 1/(2-A000108(x)^2), where A000108(x) is the generating function of the Catalan Numbers.
Conjecture: n*a(n) + 2*(-4*n+3)*a(n-1) + 12*(n-2)*a(n-2) + 8*(2*n-3)*a(n-3) = 0.
From Robert Israel, Mar 31 2019: (Start)
Conjecture verified (for n >= 4) using the differential equation (16*x^3 + 12*x^2 - 8*x + 1)*y' + (24*x^2 - 2)*y -12*x^2 + 2*x = 0 satisfied by the g.f.
a(n) ~ (sqrt(2)/4)*(2 + 2*sqrt(2))^n. (End)