A289705 Number of 4-cycles in the n-triangular honeycomb queen graph.
0, 0, 15, 96, 330, 855, 1866, 3624, 6468, 10818, 17193, 26208, 38598, 55209, 77028, 105168, 140904, 185652, 241011, 308736, 390786, 489291, 606606, 745272, 908076, 1098006, 1318317, 1572480, 1864254, 2197629, 2576904, 3006624, 3491664, 4037160, 4648599, 5331744, 6092730
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Index entries for linear recurrences with constant coefficients, signature (4, -4, -4, 10, -4, -4, 4, -1).
Programs
-
Mathematica
Table[(24 n^5 + 170 n^4 - 660 n^3 + 160 n^2 + 606 n - 165 + (-1)^n (165 - 30 n))/320, {n, 20}] LinearRecurrence[{4, -4, -4, 10, -4, -4, 4, -1}, {0, 0, 15, 96, 330, 855, 1866, 3624}, 20] CoefficientList[Series[-((3 x^2 (-5 - 12 x - 2 x^2 + 7 x^3))/((-1 + x)^6 (1 + x)^2)), {x, 0, 20}], x]
Formula
a(n) = (24*n^5 + 170*n^4 - 660*n^3 + 160*n^2 + 606*n - 165 + (-1)^n*(165 - 30*n))/320.
a(n) = 4*a(n-1)-4*a(n-2)-4*a(n-3)+10*a(n-4)-4*a(n-5)-4*a(n-6)+4*a(n-7)-a(n-8).
G.f.: (-3*x^3*(-5 - 12*x - 2*x^2 + 7*x^3))/((-1 + x)^6*(1 + x)^2).