A289707 Number of 6-cycles in the n-triangular honeycomb queen graph.
0, 0, 16, 911, 8013, 38130, 129932, 358272, 851710, 1815124, 3554910, 6510729, 11289019, 18704640, 29823436, 46014402, 69002190, 100930284, 144424446, 202667301, 279473821, 379377584, 507719550, 670746120, 875712560, 1130992902, 1446199474, 1832304547, 2301777585, 2868718404
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Graph Cycle
- Index entries for linear recurrences with constant coefficients, signature (3, 1, -10, 3, 13, -3, -12, -3, 13, 3, -10, 1, 3, -1).
Programs
-
Mathematica
Table[(-315 (-1)^n (-2489 + 1659 n - 297 n^2 + 10 n^3) - 792995 + 3789081 n - 1968939 n^2 - 3033450 n^3 + 3489990 n^4 - 1269366 n^5 + 154014 n^6 + 1440 n^7 + 8960 Cos[2 n Pi/3] - 8960 Sqrt[3] Sin[2 n Pi/3])/40320, {n, 20}] LinearRecurrence[{3, 1, -10, 3, 13, -3, -12, -3, 13, 3, -10, 1, 3, -1}, {0, 0, 16, 911, 8013, 38130, 129932, 358272, 851710, 1815124, 3554910, 6510729, 11289019, 18704640}, 20]
-
PARI
concat(vector(2), Vec(x^3*(16 + 863*x + 5264*x^2 + 13340*x^3 + 16591*x^4 + 7535*x^5 - 7572*x^6 - 14592*x^7 - 9919*x^8 - 2886*x^9) / ((1 - x)^8*(1 + x)^4*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Jul 27 2017
Formula
a(n) = 3*a(n-1)+a(n-2)-10*a(n-3)+3*a(n-4)+13*a(n-5)-3*a(n-6)-12*a(n-7)-3*a(n-8)+13*a(n-9)+3*a(n-10)-10*a(n-11)+a(n-12)+3*a(n-13)-a(n-14).
G.f.: x^3*(16 + 863*x + 5264*x^2 + 13340*x^3 + 16591*x^4 + 7535*x^5 - 7572*x^6 - 14592*x^7 - 9919*x^8 - 2886*x^9) / ((1 - x)^8*(1 + x)^4*(1 + x + x^2)). - Colin Barker, Jul 27 2017