A289722 Irregular triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the n-Apollonian network.
6, 15, 6, 42, 72, 6, 123, 522, 258, 366, 2970, 3894, 396, 1095, 14838, 37332, 13680, 216, 3282, 68736, 278490, 224928, 24624, 9843, 303918, 1779678, 2517228, 754704, 22032, 29526, 1303938, 10269150, 22233096, 13114656, 1489104, 7776
Offset: 1
Examples
Triangle begins: 6; 15, 6; 42, 72, 6; 123, 522, 258; 366, 2970, 3894, 396; 1095, 14838, 37332, 13680, 216; 3282, 68736, 278490, 224928, 24624; 9843, 303918, 1779678, 2517228, 754704, 22032; 29526, 1303938, 10269150, 22233096, 13114656, 1489104, 7776; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..883
- Eric Weisstein's World of Mathematics, Apollonian Network
- Eric Weisstein's World of Mathematics, Wiener Index
Crossrefs
Cf. A289022.
Programs
-
Mathematica
R[dp_, peq_, p1_, p2_] := {3*(dp - x + peq^2 + (2 + 7*x)*p1^2 + (7 + 2*x)*p2^2 + (4 + 2*x)*peq*p1 + 6*peq*p2 + 2*(4 + 5*x)*p1*p2 + x*(peq + 3*p1 + 3*p2)), x*(1 + 3*p1), 2*(p1 + p2), peq + p2}; A[n_] := (v = {6*x, x, 0, 0}; For[i = 2, i <= n, i++, v = R @@ v]; v[[1]]); Table[CoefficientList[A[n], x] // Rest, {n, 1, 10}] // Flatten (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
-
PARI
R(dp, peq,p1,p2,x) = {[3*(dp - x + peq^2 + (2+7*x)*p1^2 + (7+2*x)*p2^2 + (4+2*x)*peq*p1 + 6*peq*p2 + 2*(4+5*x)*p1*p2 + x*(peq+3*p1+3*p2)), x*(1+3*p1), 2*(p1+p2), peq+p2]} A(n,x) = {my(v=[6*x,x,0,0,x]); for(i=2, n, v=R(v[1],v[2],v[3],v[4],x)); v[1]} for (n=1,10,print(Vec(polrecip(A(n,x))),";" ))
Comments