A289807 p-INVERT of (1,2,2,3,3,4,4,...) (A080513), where p(S) = 1 - S - S^2.
1, 4, 13, 42, 133, 424, 1348, 4291, 13653, 43449, 138261, 439979, 1400101, 4455420, 14178073, 45117606, 143573662, 456881476, 1453892534, 4626590576, 14722780217, 46850970327, 149089600359, 474434334814, 1509749422360, 4804338875098, 15288412556740
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 2, -5, 1, 2, -1)
Programs
-
Mathematica
z = 60; s = x (1 + x - x^2)/((1 - x)^2*(1 + x)); p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A080513 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289807 *) LinearRecurrence[{3,2,-5,1,2,-1},{1,4,13,42,133,424},30] (* Harvey P. Dale, Aug 20 2024 *)
Formula
G.f.: (1 + x - x^2)/(1 - 3 x - 2 x^2 + 5 x^3 - x^4 - 2 x^5 + x^6).
a(n) = 3*a(n-1) + 2*a(n-2) - 5*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Comments