cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289831 a(n) = A289813(n) + A289814(n).

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 2, 3, 3, 4, 5, 5, 6, 7, 7, 6, 7, 7, 4, 5, 5, 6, 7, 7, 6, 7, 7, 8, 9, 9, 10, 11, 11, 10, 11, 11, 12, 13, 13, 14, 15, 15, 14, 15, 15, 12, 13, 13, 14, 15, 15, 14, 15, 15, 8, 9, 9, 10, 11, 11, 10, 11, 11, 12, 13, 13, 14, 15, 15, 14, 15, 15, 12
Offset: 0

Views

Author

Rémy Sigrist, Jul 13 2017

Keywords

Comments

The ones in the binary representation of a(n) correspond to the nonzero digits in the ternary representation of n; for example: ternary(42) = 1120 and binary(a(42)) = 1110 (a(42) = 14).
Each number k >= 0 appears 2^A000120(k) times.
a(A004488(n)) = a(n).

Examples

			The first values, alongside the ternary representation of n, and the binary representation of a(n), are:
n       a(n)    ternary(n)  binary(a(n))
--      ----    ----------  ------------
0       0       0           0
1       1       1           1
2       1       2           1
3       2       10          10
4       3       11          11
5       3       12          11
6       2       20          10
7       3       21          11
8       3       22          11
9       4       100         100
10      5       101         101
11      5       102         101
12      6       110         110
13      7       111         111
14      7       112         111
15      6       120         110
16      7       121         111
17      7       122         111
18      4       200         100
19      5       201         101
20      5       202         101
21      6       210         110
22      7       211         111
23      7       212         111
24      6       220         110
25      7       221         111
26      7       222         111
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Sign@ IntegerDigits[n, 3], 2], {n, 0, 100}] (* Indranil Ghosh, Aug 03 2017 *)
  • PARI
    a(n) = my (d=digits(n,3)); fromdigits(vector(#d, i, sign(d[i])), 2)
    
  • Python
    from sympy.ntheory.factor_ import digits
    from sympy import sign
    def a(n):
        d=digits(n, 3)[1:]
        return int(''.join(str(sign(i)) for i in d), 2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Aug 03 2017

Formula

a(0) = 0.
a(3*n) = 2*a(n).
a(3*n + 1) = 2*a(n) + 1.
a(3*n + 2) = 2*a(n) + 1.