A289871 Irregular triangle read by rows T(n, k) is the number of admissible pinnacle sets with maximum element n and cardinality k.
1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 5, 0, 1, 5, 9, 0, 1, 6, 14, 14, 0, 1, 7, 20, 28, 0, 1, 8, 27, 48, 42, 0, 1, 9, 35, 75, 90, 0, 1, 10, 44, 110, 165, 132, 0, 1, 11, 54, 154, 275, 297, 0, 1, 12, 65, 208, 429, 572, 429, 0, 1, 13, 77, 273, 637, 1001, 1001
Offset: 0
Examples
Triangle begins: 1; 0; 0; 0, 1; 0, 1; 0, 1, 2; 0, 1, 3; 0, 1, 4, 5; 0, 1, 5, 9; ...
Links
- Robert Davis, Sarah A. Nelson, T. Kyle Petersen, Bridget E. Tenner, The pinnacle set of a permutation, arXiv:1704.05494 [math.CO], 2017.
Programs
-
Mathematica
T[0, 0] = 1; T[, 0] = 0; T[n, k_] /; n <= 2k = 0; T[n_, k_] := T[n, k] = Sum[T[j, k-1], {j, 0, n-1}]; Table[T[n, k], {n, 0, 16}, {k, 0, Max[0, (n-1)/2]}] // Flatten (* Jean-François Alcover, Feb 02 2019 *)
-
PARI
T(n, k) = {if ((n==0) && (k==0), return (1)); if (n <= 2*k, return(0)); sum(kk=0, n-1, T(kk, k-1));} tabf(nn) = {print(T(0, 0), ", "); for (n=1, nn, for (k=0, round(n-1)\2, print1(T(n, k), ", ");); print(););}
Formula
T(n,k) = Sum_{n>2k} T(n,k-1) if n>2*k; T(n,k) = 0 if n<=2*k; T(0,0) = 1.
Comments