cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289871 Irregular triangle read by rows T(n, k) is the number of admissible pinnacle sets with maximum element n and cardinality k.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 5, 0, 1, 5, 9, 0, 1, 6, 14, 14, 0, 1, 7, 20, 28, 0, 1, 8, 27, 48, 42, 0, 1, 9, 35, 75, 90, 0, 1, 10, 44, 110, 165, 132, 0, 1, 11, 54, 154, 275, 297, 0, 1, 12, 65, 208, 429, 572, 429, 0, 1, 13, 77, 273, 637, 1001, 1001
Offset: 0

Views

Author

Michel Marcus, Jul 14 2017

Keywords

Comments

See David et al. link for definitions.

Examples

			Triangle begins:
1;
0;
0;
0, 1;
0, 1;
0, 1, 2;
0, 1, 3;
0, 1, 4, 5;
0, 1, 5, 9;
...
		

Crossrefs

Cf. A008315, A037952 (row sums).

Programs

  • Mathematica
    T[0, 0] = 1; T[, 0] = 0; T[n, k_] /; n <= 2k = 0; T[n_, k_] := T[n, k] = Sum[T[j, k-1], {j, 0, n-1}];
    Table[T[n, k], {n, 0, 16}, {k, 0, Max[0, (n-1)/2]}] // Flatten (* Jean-François Alcover, Feb 02 2019 *)
  • PARI
    T(n, k) = {if ((n==0) && (k==0), return (1)); if (n <= 2*k, return(0)); sum(kk=0, n-1, T(kk, k-1));}
    tabf(nn) = {print(T(0, 0), ", "); for (n=1, nn, for (k=0, round(n-1)\2, print1(T(n, k), ", ");); print(););}

Formula

T(n,k) = Sum_{n>2k} T(n,k-1) if n>2*k; T(n,k) = 0 if n<=2*k; T(0,0) = 1.