A289872 a(n) is the number of partial sums of the divisors of n that are the sum of divisors of some integer.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 4, 2, 3, 3, 5, 2, 5, 2, 5, 3, 4, 2, 6, 3, 3, 4, 6, 2, 5, 2, 6, 4, 4, 4, 4, 2, 3, 3, 7, 2, 6, 2, 6, 4, 3, 2, 6, 3, 5, 3, 5, 2, 6, 3, 6, 3, 4, 2, 8, 2, 3, 4, 7, 3, 6, 2, 5, 3, 7, 2, 6, 2, 4, 4, 4, 3, 6, 2, 7, 5, 4, 2, 6, 3, 3, 3, 6, 2, 6
Offset: 1
Keywords
Examples
For n=2, the divisors are 1, 2; the partial sums are 1, 3; 1=sigma(1) and 3=sigma(2); so a(2)=2. For n=10, the divisors are 1, 2, 5, 10; the partial sums are 1, 3, 8, 18; 1=sigma(1), 3=sigma(2), 8=sigma(7) and 18=sigma(10); so a(10)=4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
M:= 1000: # get a(n) for n=1..m where m is the first number with sigma(m+1) > M S:= Vector(M): for n from 1 to M-1 do v:= numtheory:-sigma(n); if v > M then if not assigned(nmax) then nmax:= n-1 fi elif S[v] = 0 then S[v]:= 1 fi; od: seq(add(S[i],i=ListTools:-PartialSums(sort(convert(numtheory:-divisors(n),list)))), n = 1..nmax); # Robert Israel, Jul 14 2017
-
Mathematica
s = Union@ DivisorSigma[1, Range[10^6]]; Array[Count[Accumulate@ Divisors@ #, k_ /; MemberQ[s, k]] &, 90] (* Michael De Vlieger, Jul 14 2017 *)
-
PARI
issigma(n) = {for (k=1, n, if (sigma(k) == n, return (1));); 0;} a(n) = {d = divisors(n); v = vector(#d, k, sum(j=1, k, d[j])); sum(k=1, #v, issigma(v[k]));}
Formula
For n>=1 and p prime, a(p^n) = n+1.