cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289873 Related to perfect Wichmann rulers: a(n) = ( n^2 - (mod(n, 6) - 3)^2 ) / 3.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 21, 27, 33, 39, 45, 55, 65, 75, 85, 95, 105, 119, 133, 147, 161, 175, 189, 207, 225, 243, 261, 279, 297, 319, 341, 363, 385, 407, 429, 455, 481, 507, 533, 559, 585, 615, 645, 675, 705, 735, 765, 799, 833, 867, 901, 935, 969, 1007, 1045, 1083, 1121, 1159, 1197, 1239, 1281, 1323, 1365
Offset: 2

Views

Author

Hugo Pfoertner, Jul 14 2017

Keywords

Comments

Leading term in length A289761 of longest perfect Wichmann ruler with n segments.

Crossrefs

A014641 is a subsequence.

Programs

  • Maple
    p := (n, x) -> (2*n - 3*(1 + x))*(1 + x):
    a := n -> p(n, 2*floor(n/6)):
    seq(a(n), n = 2..64); # Peter Luschny, Jul 14 2017
  • Mathematica
    Table[(n^2 - (Mod[n, 6] - 3)^2)/3, {n, 2, 64}] (* Michael De Vlieger, Jul 14 2017 *)
  • Python
    def A289873(n): return (n+(m:=n%6))*(n-(k:=m-3))//3+k-n # Chai Wah Wu, Jun 20 2024

Formula

a(n) = A289761(n) - n.
G.f.: x^2*(1 + x - x^2)*(1 + x^2 - x^3 + 2*x^4 + x^5) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) (conjectured). - Colin Barker, Jul 14 2017
Can be seen as a family of parabolas p_{n}(x) = (2*n - 3*(1 + x))*(1 + x) evaluated at x = 2*floor(n/6). - Peter Luschny, Jul 14 2017