A289895 Numbers that are the sum of distinct square pyramidal numbers (A000330).
0, 1, 5, 6, 14, 15, 19, 20, 30, 31, 35, 36, 44, 45, 49, 50, 55, 56, 60, 61, 69, 70, 74, 75, 85, 86, 90, 91, 92, 96, 97, 99, 100, 104, 105, 106, 110, 111, 121, 122, 126, 127, 135, 136, 140, 141, 145, 146, 147, 151, 152, 154, 155, 159, 160, 161, 165, 166, 170, 171, 175, 176, 177, 181, 182, 184, 185, 189, 190, 191, 195, 196, 200
Offset: 1
Keywords
Examples
20 is in the sequence because 20 = 1 + 5 + 14 = 1^2 + 1^2 + 2^2 + 1^2 + 2^2 + 3^2.
Links
Programs
-
Mathematica
max = 200; f[x_] := Product[1 + x^(k (k + 1) (2 k + 1)/6), {k, 1, 10}]; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, max}]]
Formula
Exponents in expansion of Product_{k>=1} (1 + x^(k*(k+1)*(2*k+1)/6)).
Comments