A289977 p-INVERT of (0,0,0,1,2,3,5,8,...), the Fibonacci numbers preceded by three zeros, where p(S) = 1 - S - S^2.
0, 0, 0, 1, 1, 2, 3, 7, 12, 23, 41, 77, 140, 258, 470, 861, 1570, 2867, 5225, 9526, 17352, 31607, 57547, 104766, 190684, 347029, 631476, 1148985, 2090427, 3803044, 6918379, 12585209, 22892932, 41641932, 75744383, 137772396, 250592150, 455792833, 829016539
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -2, 0, -1, -1, 0, 1)
Programs
-
Mathematica
z = 60; s = x^4/(1 - x - x^2); p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* 0,0,0,1,2,3,5,... *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289977 *) LinearRecurrence[{2,1,-2,0,-1,-1,0,1},{0,0,0,1,1,2,3,7},40] (* Harvey P. Dale, Jul 14 2018 *)
-
PARI
concat(vector(3), Vec(x^3*(1 - x)*(1 - x^2 - x^3) / (1 - 2*x - x^2 + 2*x^3 + x^5 + x^6 - x^8) + O(x^50))) \\ Colin Barker, Aug 24 2017
Formula
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-5) - a(n-6) + a(n-8).
G.f.: x^3*(1 - x)*(1 - x^2 - x^3) / (1 - 2*x - x^2 + 2*x^3 + x^5 + x^6 - x^8). - Colin Barker, Aug 24 2017
Comments