cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289978 Triangle read by rows: the multiset transform of the balanced binary Lyndon words (A022553).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 8, 4, 1, 1, 0, 25, 11, 4, 1, 1, 0, 75, 39, 12, 4, 1, 1, 0, 245, 124, 42, 12, 4, 1, 1, 0, 800, 431, 138, 43, 12, 4, 1, 1, 0, 2700, 1470, 490, 141, 43, 12, 4, 1, 1, 0, 9225, 5160, 1704, 504, 142, 43, 12, 4, 1, 1, 0, 32065, 18160, 6088, 1763, 507, 142, 43, 12, 4, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 18 2017

Keywords

Examples

			The triangle begins in row 0 and column 0 as:
1;
0       1;
0       1      1;
0       3      1      1;
0       8      4      1     1;
0      25     11      4     1     1;
0      75     39     12     4     1    1;
0     245    124     42    12     4    1    1;
0     800    431    138    43    12    4    1   1;
0    2700   1470    490   141    43   12    4   1   1;
0    9225   5160   1704   504   142   43   12   4   1  1;
0   32065  18160   6088  1763   507  142   43  12   4  1  1;
0  112632  64765  21790  6337  1777  508  142  43  12  4  1 1;
0  400023 232347  78845 22798  6396 1780  508 142  43 12  4 1 1;
0 1432613 840285 286652 82941 23047 6410 1781 508 142 43 12 4 1 1;
		

Crossrefs

Cf. A022553 (column k=1), A000108 (row sums), A033184, A290277.
T(2n,n) gives A292287.

Programs

  • Maple
    with(numtheory):
    g:= proc(n) option remember; `if`(n=0, 1, add(
           mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n))
        end:
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(binomial(g(i)+j-1, j)*
             b(n-i*j, i-1, p-j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Jul 25 2017
  • Mathematica
    g[n_]:=g[n]=If[n==0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/(2n)]; b[n_, i_, p_]:=b[n, i, p]=If[p>n, 0, If[n==0, 1, If[Min[i, p]<1, 0, Sum[Binomial[g[i] + j - 1, j] b[n - i*j, i - 1, p - j], {j, 0, Min[n/i, p]}]]]]; Table[b[n, n, k], {n, 0, 14}, {k, 0, n}]//Flatten (* Indranil Ghosh, Aug 05 2017, after Maple code *)
    nn = 14;
    b[n_] := If[n==0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/ (2n)];
    CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^b[i], {i, 1, nn}], {x, 0, nn}] // CoefficientList[#, x]&) // Flatten (* Jean-François Alcover, Oct 29 2021 *)

Formula

G.f.: Product_{j>=1} 1/(1-y*x^j)^A022553(j). - Alois P. Heinz, Jul 25 2017